Abstract

We develop an online probabilistic metric-semantic mapping approach for autonomous robots relying on streaming RGB-D observations. We cast this problem as a Bayesian inference task, requiring encoding both the geometric surfaces and semantic labels (e.g., chair, table, wall) of the unknown environment. We propose an online Gaussian Process (GP) training and inference approach, which avoids the complexity of GP classification by regressing a truncated signed distance function representation of the regions occupied by different semantic classes. Online regression is enabled through sparse GP approximation, compressing the training data to a finite set of inducing points, and through spatial domain partitioning into an Octree data structure with overlapping leaves. Our experiments demonstrate the effectiveness of this technique for large-scale probabilistic metric-semantic mapping of 3D environments. A distinguishing feature of our approach is that the generated maps contain full continuous distributional information about the geometric surfaces and semantic labels, making them appropriate for uncertainty-aware planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.