Abstract
Using the results of recent numerical simulations, we extend an existing kinetic theory for dense flows of identical, nearly elastic, frictionless spheres to identical, very dissipative, frictional spheres. The existing theory incorporates an additional length scale in the expression for the collisional rate of dissipation; this length scale is identified with the size of a cluster of correlated particles. Parameters of the theory for very dissipative, frictional spheres are set using the results of physical experiments on inclined flows of spheres over a rigid, bumpy base in the absence of sidewalls. The resulting theory is then tested against the results of physical experiments on flows of the same material over the surface of an erodible heap when frictional sidewalls are present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.