Abstract

Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] experiments driven by the Z machine produce >1013 deuterium-deuterium fusion reactions [Gomez et al., Phys. Rev. Lett. 125, 155002 (2020)]. Simulations indicate high yields and gains (1000) with increased current and deuterium-tritium layers for burn propagation [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. Such a coating also isolates the metal liner from the gaseous fuel, which should reduce mixing of liner material into the fuel. However, the vapor density at the triple point is only 0.3 kg/m3, which is not high enough for MagLIF operation. We present two solutions to this problem. First, a fuel wetted low-density plastic foam can be used to form a layer on the inside of the liner. The desired vapor density can be obtained by controlling the temperature. This does however introduce carbon into the layer which will enhance radiation losses. Simulations indicate that this wetted foam layer can significantly contribute to the fusion yield when the foam density is less than 35 kg/m3. Second, we show that a pure frozen fuel layer can first be formed on the inside of the liner and then low temperature gaseous fuel can be introduced just before the implosion without melting a significant amount of the ice layer. This approach is the most promising for MagLIF to produce high yield and gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call