Abstract
Water in Earth's upper mantle is a minor and yet critically important component that dictates mantle properties such as strength and melting behavior. Minerals with stoichiometric water, such as those of the humite group, are important yet poorly characterized potential reservoirs for volatiles in the upper mantle. Here, we report observation of hydroxyl members of the humite group as inclusions in mantle-derived diamond. Hydroxylchondrodite and hydroxylclinohumite were found coexisting with olivine, magnesiochromite, Mg-bearing calcite, dolomite, quartz, mica, and a djerfisherite-group mineral in a diamond from Brazil. The olivine is highly forsteritic (Mg# 97), with non-mantle-like oxygen isotope composition (δ18O +6.2‰), and is associated with fluid inclusions and hydrous minerals-features that could be inherited from a serpentinite protolith. Our results constitute direct evidence for the presence of deserpentinized peridotitic protoliths in subcratonic mantle keels, placing important constraints on the stability of hydrous phases in the mantle and the origin of diamond-forming fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.