Abstract
Using Monte Carlo simulations, the impact on structural ordering in two-dimensional systems via the interplay of size bidispersity and quenched disorder in the form of an externally applied spatially random potential, is studied for a system of hard disks. By scanning across a wide range of dense packing fractions, size ratios and roughness of the applied potential, the phase diagram is constructed, which demonstrates that both quenched and size disorders shift the onset of translational order to higher packings, while maintaining the presence of the intermediate hexatic phase. At larger disorder strengths, the signatures of structural order are absent within the range of investigated packing fractions. Further, the dynamics with increasing potential strength is analysed for the mono-component system to obtain a spatio-temporal description of the melting process. Finally, the influence of the externally rough field on the Mermin–Wagner fluctuations, characteristic to two-dimensional systems, is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.