Abstract

AbstractThe installation of dense granular columns by various construction techniques can be used to mitigate liquefaction through a combination of densification, increase of lateral stresses, reinforcement, and drainage. The contributing mechanism of shear reinforcement is isolated and explored using nonlinear three-dimensional (3D) finite-element (FE) analysis. FE models representing both dry and saturated conditions were developed to evaluate cases with and without generation and dissipation of excess pore-water pressures. The shear stress and strain distributions between the granular columns and surrounding soil, and the level of shear stress reduction, were investigated for a practical range of treatment geometries, relative stiffness ratios, vertical stresses, and relative densities of the surrounding soil. A set of 10 acceleration time histories were used as input motions. The FE results show that granular columns undergo a shear strain deformation pattern that is noncompatible with the surrounding...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.