Abstract

The Sharpened Distance Conjecture and Tower Scalar Weak Gravity Conjecture are closely related but distinct conjectures, neither one implying the other. Motivated by examples, I propose that both are consequences of two new conjectures: 1. The infinite distance geodesics passing through an arbitrary point ϕ in the moduli space populate a dense set of directions in the tangent space at ϕ. 2. Along any infinite distance geodesic, there exists a tower of particles whose scalar-charge-to-mass ratio (–∇log m) projection everywhere along the geodesic is greater than or equal to 1/d−2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ 1/\\sqrt{d-2} $$\\end{document}. I perform several nontrivial tests of these new conjectures in maximal and half-maximal supergravity examples. I also use the Tower Scalar Weak Gravity Conjecture to conjecture a sharp bound on exponentially heavy towers that accompany infinite distance limits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call