Abstract

Three-dimensional flow measurements by Particle Tracking Velocimetry (PTV) provide scattered flow information, that often needs to be interpolated onto a regular grid. Therefore, the use of experimental data assimilation approaches such as VIC+ (Schneiders and Scarano, 2016) were proposed to enhance the instantaneously available spatial resolution limits beyond that of the PTV measurements. Nevertheless, there exists no prior attempt to perform the data assimilation when the flow is in direct contact with physical objects. Thus, in order to handle generic solid body intrusions within the flow fields of VIC+ application, the utilization of Arbitrary Lagrangian-Eulerian and immersed boundary treatment approaches of the computational fluid-structure interaction (FSI) frameworks are proposed. The introduced variants over the standard VIC+ are assessed with a high fidelity numerical test case of flow over periodic hills. The accuracy superiority of the flow field reconstructions with the proposed approaches are denoted especially in close proximity of the interaction surface. An experimental application of the introduced methods is demonstrated to compute the pressure distribution over an unsteadily moving elastic membrane surface, revealing the time-resolved interaction between the flow structures and the membrane deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.