Abstract

We study the repartition of monodisperse bubbles at the inlet node of an asymmetric microfluidic loop for low to high bubble densities. In large loops, we evidence a new regime. Contrary to the classical belief, we point out that bubbles are directed not towards the arm having the higher total flow rate but towards the arm with the higher water flow rate at low and moderate relative gas flow rates. At higher rates, they enter the longer arm when they reach close packing in the shorter arm. In small loops, we evidence a clogging regime at high relative gas flow rates. Collisions between bubbles coming from the two arms at the outlet clog the longer arm. We propose a comprehensive analysis allowing us to explain these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call