Abstract
G. Ivanova and E. Wagner-Bojakowska shown that the set of Darboux quasi-continuous functions with nowhere dense set of discontinuity points is dense in the metric space of Darboux quasi-continuous functions with the supremum metric. We prove that this set also is σ-strongly porous in such space. We obtain the symmetrical result for the family of strong Świątkowski functions, i.e., that the family of strong Świątkowski functions with nowhere dense set of discontinuity points is dense (thus, “large”) and σ-strongly porous (thus, asymmetrically, “small”) in the family of strong Świątkowski functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.