Abstract

The development of artificial intelligence algorithms typically demands abundant high-quality data. In medicine, the datasets that are required to train the algorithms are often collected for a single task, such as image-level classification. Here, we report a workflow for the segmentation of anatomical structures and the annotation of pathological features in slit-lamp images, and the use of the workflow to improve the performance of a deep-learning algorithm for diagnosing ophthalmic disorders. We used the workflow to generate 1,772 general classification labels, 13,404 segmented anatomical structures and 8,329 pathological features from 1,772 slit-lamp images. The algorithm that was trained with the image-level classification labels and the anatomical and pathological labels showed better diagnostic performance than the algorithm that was trained with only the image-level classification labels, performed similar to three ophthalmologists across four clinically relevant retrospective scenarios and correctly diagnosed most of the consensus outcomes of 615 clinical reports in prospective datasets for the same four scenarios. The dense anatomical annotation of medical images may improve their use for automated classification and detection tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.