Abstract

Efficient constrained thin-plate spline warps are proposed in this paper which can warp an area in the plane such that two embedded snake grids obtained from two SPAMM frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the myocardium, where no information is available, a C1 continuous vector field is interpolated. The formalism proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The method has been extensively validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.