Abstract
In this paper, we study denoising of multicomponent images. The presented procedures are spatial wavelet-based denoising techniques, based on Bayesian least-squares optimization procedures, using prior models for the wavelet coefficients that account for the correlations between the spectral bands. We analyze three mixture priors: Gaussian scale mixture models, Bernoulli-Gaussian mixture models and Laplacian mixture models. These three prior models are studied within the same framework of least-squares optimization. The presented procedures are compared to Gaussian prior model and single-band denoising procedures. We analyze the suppression of non-correlated as well as correlated white Gaussian noise on multispectral and hyperspectral remote sensing data and Rician distributed noise on multiple images of within-modality magnetic resonance data. It is shown that a superior denoising performance is obtained when (a) the interband covariances are fully accounted for and (b) prior models are used that better approximate the marginal distributions of the wavelet coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.