Abstract
Denoising of medical images is of great concern as it plays a significant role in performance of computer aided diagnosis (CAD) systems. In real life scenarios, various conditions like vibration of magnetic coils due to rapid pulses of electricity contribute to noise during the procurement of medical images such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound. The use of imaging modality depends on the type of disease and its severity, and MRI is the commonly employed imaging modality for diagnosis of second most common dreadful cancers in men known as prostate cancer. However, MRI is prone to certain noises as Gaussian and Rician making denoising one of the important steps in the CAD system. Traditional approaches used for denoising of MRI were prone to certain issues such as loss of data due to compression and preservation of edge details. Hence, this paper presents Bayes shrinkage based fused wavelet transform (BSbFWT) and Block based autoencoder network (BBAuto-Net) for removal of noise from MRI. Further, the performance analysis of the denoising approaches are performed using different metrics. Thus, the values of peak signal to noise ratio (PSNR), mean squared error (MSE), structural similarity index metric (SSIM) and mean absolute error (MAE) for proposed BB-Autonet is found to be 28.029, 89.354, 0.581 and 21.802 for combined Gaussian and Rician noise. Whereas, the values of PSNR, MSE, SSIM and MAE for proposed BSbFWT are found to be 29.028, 81.33, 0.747 and 21.962 for combined Gaussian and Rician noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.