Abstract
In this article, we propose a new method for denoising hyperspectral imagery. Hyperspectral imagery normally contains a small amount of noise, which can hardly be seen by human eyes thanks to its relatively high signal-to-noise ratio. However, in many remote sensing applications, this amount of noise is still troublesome. In this study, we first perform principal component analysis (PCA) to the hyperspectral data cube to be denoised in order to separate the fine features from the noise in the hyperspectral data cube. Because the first few PCA output channels contain the majority of information in the hyperspectral data cube, we do not denoise these PCA output channel images. We use the block-matching 4D (BM4D) filtering to reduce the noise in the remaining low-energy noisy PCA output channel images. Finally, an inverse PCA transform is performed in order to obtain the denoised hyperspectral data cube. Experimental results show that our proposed method in this work is very competitive when compared with existing methods for hyperspectral imagery denoising.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.