Abstract
As magnetotelluric (MT) is an important method for exploring the geoelectrical structure of the underground, it has motivated in-depth research and application by many geophysicists. Nevertheless, due to the influence of the environment, the collected data are interfered with strong humanistic noise, which might result in a loss of their authenticity. To solve the above problems, many time-frequency domain methods have emerged. Based on the advantages of singular value decomposition (SVD) denoising, we propose a method of magnetotelluric noisy data processing based on multiresolution singular value decomposition (MSVD) and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), which overcomes the lack of flexibility in the construction of the matrix in SVD data processing. First, we introduce a new signal processing method by generalizing SVD to MSVD to obtain more accurate signal characteristics. Due to the difficulty of matrix selection, we suggest the singular value contribution rate as the standard to determine the suitable Hankel matrix and use MSVD to perform effective decomposition. Second, we propose the ICEEMDAN algorithm for removing impulse noise, which efficiently processes each modal component through adaptively decomposition of different thresholds. Experiments on synthetic and realistic data demonstrate that our proposed method can separate the large-scale contours of the magnetotelluric noisy data and improve the time-domain waveform quality of low-frequency signal. The apparent resistivity-phase curves, coherence and SNR are all obviously promoted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.