Abstract

Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object's phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phase retrieval such as ptychography. Our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise.

Highlights

  • Wigner Distribution Deconvolution (WDD) has previously been demonstrated successfully in the optical regime, the X-ray regime, and with electrons

  • WDD can be readily adapted for use in experimental setups utilizing partially coherent illumination

  • images acquired by scanning a probe over an object

Read more

Summary

Introduction

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.