Abstract

Cytokinesis relies on membrane trafficking pathways regulated by Rabs and guanine nucleotide exchange factors (GEFs). During cytokinesis, the intercellular cytokinetic bridge (ICB) connecting daughter cells undergoes abscission, which requires actin depolymerization. Rab35 recruits MICAL1 to oxidize and depolymerize actin filaments. We show that DENND2B, a protein linked to cancer and congenital disorders, functions as a Rab35 GEF, recruiting and activating Rab35 at the ICB. DENND2B's N-terminal region also interacts with an active form of Rab35, suggesting that DENND2B is both a Rab35 GEF and effector. Knockdown of DENND2B delays abscission, leading to multinucleated cells and filamentous actin (F-actin) accumulation at the ICB, impairing recruitment of ESCRT-III at the abscission site. Additionally, F-actin accumulation triggers the formation of a chromatin bridge, activating the NoCut/abscission checkpoint, and DENND2B knockdown activates Aurora B kinase, a hallmark of checkpoint activation. Thus, our study identifies DENND2B as a crucial player in cytokinetic abscission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.