Abstract

The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation.

Highlights

  • Nitrogen contamination is one of the main concerns in wastewater treatment

  • The highest current production (15 A?m23 NCC) and cathode Coulombic efficiencies (CE, 85%) were achieved when nitrate was used as the electron acceptor under strictly autotrophic conditions (Period 1)

  • The use of nitrite as an electron acceptor without the presence of organic matter resulted in an increase in current production (14.1 A?m23 NCC) but cathode Coulombic efficiency was decreased (41%)

Read more

Summary

Introduction

Nitrogen contamination is one of the main concerns in wastewater treatment. The complete elimination of nitrogen from water involves many metabolic steps, which are catalysed by microorganisms with complex metabolic requirements [1]. In wastewater exhibiting a low carbon to nitrogen ratio, the conventional heterotrophic process of denitrification becomes challenging. This carbon dependence reinforces the need for the development of autotrophic processes to avoid the additional costs involved in adding organic matter to water treatments [2]. In a MFC, organic substrates are oxidised by exoelectrogenic bacteria, which produce electrons that are transferred to an anode electrode and flow to a cathode. Protons produced at the anode migrate through the solution across a cation exchange membrane to the cathode chamber where electrotrophic bacteria combine protons with a reducible compound and electrons

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.