Abstract
Denitrifying anaerobic methane oxidation (DAMO) coupled to anaerobic ammonium oxidation (anammox) is a promising technology for complete nitrogen removal with economic and environmental benefit. In this work, a model framework integrating DAMO and anammox process was constructed based on suspended-growth systems. The proposed model was calibrated and validated using experimental data from a sequencing batch reactor and a membrane aerated membrane bioreactor (MAMBR). The model managed to describe removal rates of ammonium (NH4+), nitrite (NO2-), and total nitrogen, as well as biomass changes of DAMO archaea, DAMO bacteria, and anaerobic ammonium oxidizing bacteria (AnAOB) in both reactors. The estimated parameter values revealed that DAMO archaea possessed properties of faster growth and higher biomass yield in suspended-growth systems compared to those in attached-growth systems (e.g., biofilm). Model simulation demonstrated that solid retention time (SRT) was effective in washing out DAMO bacteria, but retaining DAMO archaea and AnAOB in the MAMBR. The optimal SRT and nitritation efficiency (the ratio of the NO2- to the sum of NH4+ and NO2- in the MAMBR influent) were simulated so that 99% of total nitrogen was removed to meet the discharge standard. MAMBR further suggested to be operated with SRT between 15 and 30 days so that the optimal nitritation efficiency could be minimized to 49% for cost savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.