Abstract

The Sustainable Development Goals require that reducing waste is a priority. This work described the application of an innovative zero-waste hybrid ion exchange nanotechnology that concurrently removed nitrate and induced denitrification to ammonia, with the ability to generate fertilizer for the agriculture sector from the recycled by-products. Herein, hybrid cation exchanger-supported zero-valent iron (Fe0), and bimetallic Fe0/Pd nanoparticles (HCIX-Fe0 and HCIX-Fe0/Pd) were synthesized and successfully validated for denitrification of nitrate in spent waste brine that contained nitrate. The kinetics of nitrate catalysis by both HCIX-Fe0 and HCIX-Fe0/Pd were compared and presented by six kinetic models, namely, zero-order, pseudo first- and second-order reaction, pseudo first- and second-order adsorption, and Elovich. HCIX-Fe0/Pd displayed a higher kinetic value than HCIX-Fe0, with k1 of 0.0019 and 0.0026 min−1, respectively. Nitrate was predominantly catalysed to NH4+ at a ratio of ammonia to other nitrogen compounds of around 80:20. Although HCIX-Fe0/Pd showed slightly better (14%) kinetic results, it was determined as unfavourable for real-life application due to low selectivity toward N2 gas and the need to use H2 gas. Based on practicability, the HCIX-Fe0 was further validated. The effect of salt (using NaCl) and the role of initial pH conditions were optimized and discussed. The recovery of nitrate removal was also calculated, and a recovery range of 91.42–99.14% was obtained for three consecutive runs. The sustainable, novel, zero waste hybrid ion exchange nanotechnology using the combination of two fixed-bed columns containing nitrate-selective resin for nitrate removal and novel HCIX-Fe0 for nitrate reduction to NH4+ may be a promising sustainable solution toward the goal of discharging zero nitrate waste to the environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.