Abstract

Denitrification plays an important role in nitrogen (N) removal in freshwater ecosystems. This internal process regulates the fluctuations of N concentration, especially for lakes with high nutrients concentrations and long residence time. Lakes in Yunnan plateau (southwestern China) provide typical cases, while studies in this region have been rare. Therefore, we studied denitrification of two lakes (Lake Dianchi in hypereutrophic state and Lake Erhai in mesotrophic) in this region. We used acetylene inhibition technique to quantify potential denitrification rate (PDR) of these lakes in April and August, 2015 and 2016. PDR of the sediments ranged 0-1.21 μmol/(N·m2·hr), and that of overlying water ranged 0-0.24 μmol/(N·L·hr). Then, we used Least Angle Regression to determine the controlling factors for denitrification. Nutrients controlled PDR from two aspects: providing essential nitrogen sources; and affecting the richness and metabolism of denitrifying bacteria. In April, both aspects limited PDR; while only nitrogen sources limited PDR in August, due to depleted nitrate and enhanced denitrifying bacteria activity. Ammonia was most significant to denitrification, indicating that nitrate from nitrification transported to the bottom of well-mixed lake provide major N source by denitrification. The high PDR and low nitrate concentrate in August were evidence of an enhanced internal N cycling by algal blooms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.