Abstract

This study focuses on the investigation of the nitrogen (N) and phosphorus (P) removal characteristics of a combination of enhanced phosphorus removal (EBPR) with simultaneous partial nitrification endogenous denitrification (SPND) and post-partial denitrification process. An anaerobic/aerobic/anoxic (A/O/A) operated sequencing batch reactor (SBR) fed with urban sewage was optimized by regulating the aeration rate and anoxic time. Based on this optimization, deep-level nitrogen and phosphorus removals from low C/N urban sewage could be realized. The experimental results show that the effluent PO43--P concentration decreased from 0.06 mg·L-1 to 0 mg·L-1, the effluent NH4+-N, NO2--N, and NO3--N concentrations gradually decreased from 0.18, 18.79, and 0.08 mg·L-1 to 0, 16.46, and 0.05 mg·L-1, respectively, and the TN removal efficiency increased from 72.69% to 77.97% when the aeration rate decreased from 1.0 L·min-1 to 0.6 L·min-1 and the anoxic duration was 180 min. With the reduction of the aeration rate, the SPND phenomenon became notable and the SND rate increased from 19.18% to 31.20%. When the anoxic duration was extended from 180 min to 420 min, the effluent PO43--P, NH4+-N, and NO3--N concentrations stabilized at~0, 0, and 0.03 mg·L-1, respectively. The effluent NO2--N concentration was as low as 3.06 mg·L-1, the SND rate was~32.21%, the TN removal performance gradually improved, and the TN removal efficiency was as high as 99.42%. Thus, deep-level nitrogen and phosphorus removals could be realized with the SPNDPR-PD system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call