Abstract
In extreme environments, retention of nutrients within stream ecosystems contributes to the persistence of aquatic biota and continuity of ecosystem function. In the McMurdo Dry Valleys, Antarctica, many glacial meltwater streams flow for only 5–12 weeks a year and yet support extensive benthic microbial communities. We investigated NO3− uptake and denitrification in Green Creek by analyzing small‐scale microbial mat dynamics in mesocosms and reach‐scale nutrient cycling in two whole‐stream NO3− enrichment experiments. Nitrate uptake results indicated that microbial mats were nitrogen (N)‐limited, with NO3− uptake rates as high as 16 nmol N cm−2 h−1. Denitrification potentials associated with microbial mats were also as high as 16 nmol N cm−2 h−1. During two whole‐stream NO3−−enrichment experiments, a simultaneous pulse of NO2− was observed in the stream water. The one‐dimensional solute transport model with inflow and storage was modified to simulate two storage zones: one to account for short time scale hydrologic exchange of stream water into and out of the benthic microbial mat, the other to account for longer time scale hydrologic exchange with the hyporheic zone. Simulations indicate that injected NO3− was removed both in the microbial mat and in the hyporheic zone and that as much as 20% of the NO3− that entered the microbial mat and hyporheic zone was transformed to NO2− by dissimilatory reduction. Because of the rapid hydrologic exchange in microbial mats, it is likely that denitrification is limited either by biotic assimilation, reductase limitation, or transport limitation (reduced NO2− is transported away from reducing microbes).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.