Abstract
Dengue is a disease caused by dengue virus and represents the most important arthropod-borne viral disease in humans. Dengue virus enters host cells via binding of envelope glycoprotein (E) to a receptor. In this study, plant expression vectors containing native and synthetic glycoprotein E genes (sE) modified based on plant-optimized codon usage and fused with an ER retention signal were constructed under control of the rice amylase 3D promoter expression system. Plant expression vectors were introduced into rice callus (Oryza sativa L. cv. Dongin) via particle bombardment-mediated transformation. The integration and expression of target genes were confirmed in the transgenic callus by genomic DNA PCR and Northern blot analyses, respectively. The plant-codon optimized sE gene with an ER retention signal showed high protein production levels based on Western blot analysis of approximately 18.5ug/g dried calli weight by immunoblot-based densitometric analysis. These results suggest that the plant-codon optimized sE gene with an ER retention signal was highly produced in the transgenic rice callus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.