Abstract

The purpose of the present study is to provide evidence that chronic spinal denervation leads to an increase in numbers of synaptic terminals from a specific population of primary afferent fibers. Rats were unilaterally deafferented for 35 days (chronic denervation) by dorsal rhizotomies performed from T2 to T8 and T10 to L5, which isolates or spares the T9 root. The contralateral T9 root was spared by similar surgery 5 days (acute denervation) prior to sacrifice. The survival time on the chronic side presumably allows sprouting of T9 primary afferents to occur, whereas the time on the acute side does not. The terminals were labeled with calcitonin gene-related peptide (CGRP), which is a compound that labels a specific population of primary afferent fibers and terminals, and stereological methods were used to determine the numbers of immunolabeled terminals in laminae I and IIo on the chronic and acute sides of the T9 spinal cord. The findings are that the chronic side had approximately twice as many terminals as the acute side. This difference is statistically significant. These findings are compatible with the hypothesis that chronic denervation leads to synaptogenesis from surviving primary afferent fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.