Abstract

Skin offers protection, regulation, and sensation to the body. In collaboration with other stromal cells of the skin, keratinocytes, which differentiate from epidermis basal layers (low) to outer layers (high) leading to the stratum corneum, ensure that skin barrier function is achieved. Despite this, age-related inflammation and oxidative stress in the skin can negatively impact skin quality. Antioxidants can protect against skin damage, preventing skin aging or even reversing to some extent. Previous studies showed that Dendrobium Nobile (D. nobile) resists aging, prolongs life span, and attenuates oxidative damage and inflammation in various models. However, how D. nobile protects skin against aging or other damage is not well described yet. Therefore, in this study, a keratinocyte cell line (HACAT) was used to investigate the effect of dendrobine, the main active component of D. nobile, on oxidative damage in skin. We found that dendrobine reduced the level of intracellular reactive oxygen species by regulating the balance of antioxidant enzymes and oxidases, as well as decreased the cell apoptosis in H2O2-induced HACAT. Dendrobine also significantly activated the nuclear erythroid 2-related factor (Nrf2)/Keap1 signaling pathway. However, this antioxidant effect of dendrobine was abolished after Nrf2 gene being silenced. The results showed that dendrobine could resist the oxidative damage of skin cells, and its antioxidant function is related to the up-regulation of antioxidant enzymes as well as activation of Nrf2/Keap1 signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.