Abstract

Previous studies have shown that Dendrobium nobile Lindl. alkaloids (DNLAs) have neuroprotective effects in several Alzheimer's disease (AD) models. Dendrobine (DDB) is one of the monomer components with the highest content in DNLAs. However, the effects of DDB on cognitive impairments in AD remain unknown. In this study, we investigated the efficacy of DDB in 3 × Tg-AD mice to determine whether DDB was a key component of the anti-AD effect of DNLAs. Five-month mice were intragastrically administrated with DDB (10 and 20 mg/kg/d) or DNLAs (20 mg/kg/d) for seven consecutive months, and the effects of DDB and DNLAs were evaluated at twelve months. The results revealed that 3 × Tg-AD mice treated with DDB showed enhanced nesting ability. DDB also effectively rescued spatial learning and memory deficits in 3 × Tg-AD mice. Meanwhile, DDB treatment prevented the loss of dendritic spine density, with increased expression levels of synaptophysin, PSD95, and NCAM in the hippocampus. Finally, DDB ameliorated the increase in APP, sAPPβ, CTF-β, and β-amyloid peptides, accompanied by the promotion of GSK phosphorylation at the Ser9 site, thereby reducing hyperphosphorylated tau levels. As the active component of DNLA, DDB can preserve cognitive function, alleviate neuronal and synaptic defects, and improve APP/tau pathology in 3 × Tg-AD mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call