Abstract

Functional compartmentalization of dendrites is thought to underlie afferent-specific integration of neural activity in laminar brain structures. Here we show that in the lateral nucleus of the amygdala (LA), an area lacking apparent laminar organization, thalamic and cortical afferents converge on the same dendrites, contacting neighboring but morphologically and functionally distinct spine types. Large spines contacted by thalamic afferents exhibited larger Ca(2+) transients during action potential backpropagation than did small spines contacted by cortical afferents. Accordingly, induction of Hebbian plasticity, dependent on postsynaptic spikes, was restricted to thalamic afferents. This synapse-specific effect involved activation of R-type voltage-dependent Ca(2+) channels preferentially located at thalamic inputs. These results indicate that afferent-specific mechanisms of postsynaptic, associative Hebbian plasticity in LA projection neurons depend on local, spine-specific morphological and molecular properties, rather than global differences between dendritic compartments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.