Abstract

Hippocampal place cells provide prototypical examples of neurons jointly firing phase and rate-coded spike trains. We propose a biophysical mechanism accounting for the generation of place cell firing at the single neuron level. An interplay between external theta-modulated excitation impinging the dendrite and intrinsic dendritic spiking as well as between frequency-modulated dendritic spiking and somatic membrane potential oscillations was a key element of the model. Through these interactions robust phase and rate-coded firing emerged in the model place cell, reproducing salient experimentally observed properties of place cell firing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.