Abstract

Status Epilepticus (SE) is a distributed network disorder, which involves the hippocampus and extra-hippocampal structures. Epileptogenesis in SE is tightly associated with neurogenesis, plastic changes and neural network reorganization facilitating hyper-excitability. On the other hand, dendritic spines are known to be the excitatory synapse in the brain. Therefore, dendritic spine dynamics could play an intricate role in these network alterations. However, the exact reason behind these structural changes in SE are elusive. In the present study, we have investigated the aforementioned hypothesis in the lithium-pilocarpine treated rat model of SE. We have examined cytoarchitectural and morphological changes using hematoxylin-eosin and Golgi-Cox staining in three different brain regions viz. CA1 pyramidal layer of the dorsal hippocampus, layer V pyramidal neurons of anterior temporal lobe (ATL), and frontal neocortex of the same animals. We observed macrostructural and layer-wise alteration of the pyramidal layer mainly in the hippocampus and ATL of SE rats, which is associated with sclerosis in the hippocampus. Sholl analysis exhibited partial dendritic plasticity in apical and basal dendrites of pyramidal cells as compared to the saline-treated weight-/age-matched control group. These findings indicate that region-specific alterations in dendritogenesis may contribute to the development of independent epileptogenic networks in the hippocampus, ATL, and frontal neocortex of SE rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call