Abstract

Dual whole-cell recordings were made in layer 2/3 of the rat neocortex in synaptically connected pyramidal cells and fast-spiking non-accommodating (FSN) interneurons. In 75% of cell pairs (n = 80), the cells formed reciprocal synaptic connections. Trains of backpropagating action potentials in pyramidal cells induced Ca2+ transients in dendrites followed by inhibition of unitary IPSPs. IPSP depression was prevented by loading pyramidal cells with 5 mM BAPTA or EGTA. IPSP depression was mimicked by the metabotropic glutamate receptor (mGluR) agonist ACPD and was prevented by a mixture of the mGluR antagonists CPCCOEt and EGLU.IPSP depression was prevented by loading pyramidal cells with the antagonists of vesicular exocytosis botulinum toxin D (light chain) and GDP-beta-S. It is concluded that Ca2+-dependent release of a retrograde messenger, most probably glutamate, from pyramidal cell dendrites suppresses the inhibition of pyramidal neurons via activation of mGluRs located in FSN interneuron nerve terminals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call