Abstract
A novel dendritic C(60)-H(2)P-(ZnP)(3) (P=porphyrin) conjugate gives rise to the successful mimicry of the primary events in photosynthesis, that is, light harvesting, unidirectional energy transfer, charge transfer, and charge-shift reactions. Owing, however, to the flexibility of the linkers that connect the C(60), H(2)P, and ZnP units, the outcome depends strongly on the rigidity/viscosity of the environment. In an agar matrix or Triton X-100, time-resolved transient absorption spectroscopic analysis and fluorescence-lifetime measurements confirm the following sequence. Initially, light harvesting is seen by the peripheral C(60)-H(2)P- *(ZnP)(3) conjugate. Once photoexcited, a unidirectional energy transfer funnels the singlet excited-state energy to H(2)P to form C(60)-*(H(2)P)-(ZnP)(3), which powers an intramolecular charge transfer that oxidizes the photoexcited H(2)P and reduces the adjacent C(60) species. In the correspondingly formed (C(60))(*-)-(H(2)P)(*+)-(ZnP)(3) conjugate, an intramolecular charge-shift reaction generates (C(60))(*-)-H(2)P-(ZnP)(3) (.+), in which the radical cation resides on one of the three ZnP moieties, and for which lifetimes of up to 460 ns are found. On the other hand, investigations in organic media (i.e., toluene, THF, and benzonitrile) reveal a short cut, that is, the peripheral ZnP unit reacts directly with C(60) to form (C(60))(*-)-H(2)P-(ZnP)(3) (*+). Substantial configurational rearrangements- placing ZnP and C(60) in proximity to each other-are, however, necessary to ensure the required through space interactions (i.e., close approach). Consequently, the lifetime of (C(60))(*-)-H(2)P-(ZnP)(3) (*+) is as short as 100 ps in benzonitrile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.