Abstract

A new platform of functional hybrid materials from anionically charged high-aspect-ratio cellulose nanofibrils (CNFs) and a dendritic polyampholyte, Helux, is herein proposed. The polyampholytic character of Helux enabled facile and efficient nanoscale mixing with the CNFs, and the resulting composite mixtures of CNFs and Helux displayed thixotropic behavior and formed physical and reversibly cross-linked gels when left unperturbed for short spans of time. The gel could be chemically cross-linked into self-supporting solid hydrogels containing impressive water contents of 99.6% and a storage modulus of 1.8 kPa by thermal activation. Non-cross-linked mixtures of CNF/Helux were assembled into composites, such as films by solvent casting and aerogels with densities as low as 4 kg/m3 by lyophilizing ice-templated CNF/Helux mixtures. The resulting materials exhibited excellent wet stability due to the heat-activated cross-linking and were readily available for postfunctionalization via amidation chemistry using Helux-accessible amines in aqueous conditions. The mechanical performance of the films was not jeopardized by the addition of Helux. Additionally, by varying the amount of Helux, the compressive elastic modulus of aerogels was tunable in both the non-cross-linked and cross-linked states. The fast and efficient nanoscale mixing of anionic CNFs and a polymer containing cationic groups is unique, novel, and promising as a functional material platform. Sustainable CNFs guided by heterofunctional dendritic polyampholytes are envisaged to act as a pillar toward high-performance applications, including biomedicine and biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.