Abstract

Cerebellar Purkinje cells have the most elaborate dendritic trees among the neurons in the CNS. To investigate the dynamic aspects of dendritic morphogenesis of Purkinje cells, we performed a long-term analysis of living cells in cerebellar cell cultures derived from glutamate decarboxylase 67–green fluorescent protein mice. Most Purkinje cells had several primary dendrites during the 25-day culture period. Repeated observation of green fluorescent protein-expressing Purkinje cells over a period of 10–25 days in vitro demonstrated that not only extension, but also retraction of primary dendrites occurred during this culture period. Interestingly, both extension and retraction of primary dendrites were active between 10 and 15 days in vitro, and retraction of a primary dendrite occurred concomitantly with elongation of other primary dendrites in the same cell. Analysis of the morphological characteristics of the retracted primary dendrites demonstrated that shorter and less branched primary dendrites tended to retract. Furthermore, treatment with an inhibitor of calcium/calmodulin-dependent protein kinase II reduced the number of primary dendrites specifically during 5–15 days in vitro, the culture period when the extension and retraction of primary dendrites occurred actively. Blockade of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate-type glutamate receptors also reduced the number of primary dendrites during the same culture period, while inhibition of glutamate transporters increased the number. These findings suggest that the final morphology of Purkinje cells is achieved not only through extension, but also through retraction of their dendrites, and that calcium/calmodulin-dependent protein kinase II and neuronal activity are involved in this dendritic morphogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.