Abstract

Tumor necrosis factor-alpha (TNF-α) is a pleiotropic immune stimulatory cytokine and natural endotoxin that can induce necrosis and regression in solid tumors. However, systemic administration of TNF-α is not feasible due to its short half-life and acute toxicity, preventing its widespread use in cancer treatment. Dendritic mesoporous silica nanoparticles (DMSN) are used coated with a pH-responsive block copolymer gate system combining charged hyperbranched polyethylenimine and nonionic hydrophilic polyethylenglycol to encapsulate TNF-α and deliver it into various cancer cell lines and dendritic cells. Half-maximal effective concentration (EC50 ) for loaded TNF-α is reduced by more than two orders of magnitude. Particle stability and premature cargo release are assessed with enzyme-linked immunosorbent assay. TNF-α-loaded particles are stable for up to 5 d in medium. Tumor cells are grown in vitro as 3D fluorescent ubiquitination-based cell cycle indicator spheroids that mimic in vivo tumor architecture and microenvironment, allowing real-time cell cycle imaging. DMSN penetrate these spheroids, release TNF-α from its pores, preferentially affect cells in S/G2/M phase, and induce cell death in a time- and dose-dependent manner. In conclusion, DMSN encapsulation is demonstrated, which is a promising approach to enhance delivery and efficacy of antitumor drugs, while minimizing adverse side effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call