Abstract
The idea that the thalamo-cortical system is the crucial constituent of the neurobiological mechanisms of consciousness has a long history. For the last few decades, however, consciousness research has to a large extent overlooked the interplay between the cortex and thalamus. Here we revive an integrated view of the neurobiology of consciousness by presenting and discussing several recent major findings about the role of the thalamocortical interactions in consciousness. Based on these findings we propose a specific cellular mechanism how thalamic nuclei modulate the integration of different processing streams within single cortical pyramidal neurons. This theory is inspired by recent work done in rodents, but it integrates decades of work conducted on various species. We illustrate how this new view readily explains various properties and experimental phenomena associated with conscious experience. We discuss the implications of this idea and some of the experiments that need to be done in order to test it. Our view bridges two long-standing perspectives on the neural mechanisms of consciousness and proposes that cortical and thalamo-cortical processing interact at the level of single pyramidal cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.