Abstract

AbstractMineral precipitation can form complex patterns under non‐equilibrium conditions, in which two representative patterns are rhythmic Liesegang stripes and fractal dendrites. Interestingly, both patterns occur in the same rock formations, including various dendritic morphologies found in different rocks, such as limestone and sandstone. However, the underlying mechanism for selecting the vastly different mineral precipitation patterns remains unclear. We use a phase‐field model to reveal the mechanisms driving pattern selection in mineral precipitation. Simulations allow us to explore the effects of diffusion parameters on determining the dendritic morphologies. We also propose a general criterion to distinguish the resulting dendrites in simulations and field observations based on a qualitative visual distinction into three categories and a quantitative fractal dimension (FD) phase diagram. Using this model, we reproduce the classified dendrites in the field and invert for the key parameters that reflect the intrinsic material properties and geological environments. This study provides a quantitative tool for identifying the morphology selection mechanism with potential applications to geological field studies, exploration for resource evaluation, and other potential industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.