Abstract

Unique properties of dendritic polymers make them promising candidates for application as additives in various analytical methods. From this point, we investigated the potential use of maltose-modified hyperbranched poly(ethylene imine) (PEI-Mal) as a dynamically or covalently bound coating and a pseudostationary phase in capillary electrophoresis. The EOF mobilities were measured at different pH values (2.2, 8.5, and 10.2) using PEI-Mal in the background electrolyte (BGE) and desirable repeatability of the EOF with % RSD (n=50) ≤3.3 was obtained. The influence of pH, polymer concentration, and density of maltose shell on the separation properties of a model mixture of four proteins (albumin, lysozyme, myoglobin, insulin) were investigated. Applying PEI-Mal as a dynamic coating, improved separation of the protein mixture with a high repeatability was achieved. Applying PEI-Mal as a covalent coating for concentrating proteins in the large volume sample stacking (LVSS) combined with the field-enhanced sample injection (FESI), up to 1320-fold enhancement of sensitivity was achieved. The detection limit of 100–500ng/ml allowed successful analysis of albumin level both in blood and urine samples without additional preconcentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call