Abstract

We report a mechanism of nonisothermal dendritic flux penetration in superconducting films. Our numerical and analytical analysis of coupled nonlinear Maxwell and thermal diffusion equations shows that dendritic flux pattern formation results from spontaneous branching of propagating flux filaments due to nonlocal magnetic flux diffusion and positive feedback between flux motion and Joule heating. The branching is triggered by a thermomagnetic edge instability, which causes stratification of the critical state. The resulting distribution of thermomagnetic microavalanches is not universal, because it depends on a spatial distribution of defects. Our results are in good agreement with experiments on Nb films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.