Abstract

Several signaling pathways in neurons engage the endoplasmic reticulum (ER) calcium store by triggering calcium release. After release, ER calcium levels must be restored. In many non-neuronal cell types, this is mediated by store-operated calcium entry (SOCE), a cellular homeostatic mechanism that activates specialized store-operated calcium channels (SOC). Although much evidence supports the existence of SOCE in neurons, its importance has been difficult to determine because of the abundance of calcium channels expressed and the lack of SOC-specific pharmacological agents. We have explored the function of the SOCE-inducing protein STIM1 in neurons. In EGFP-STIM1-expressing hippocampal neurons, the sarco- and endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin caused rapid aggregation (i.e., activation) of STIM1 in soma and dendrites. Upon STIM1 activation by thapsigargin, a dramatic reduction in STIM1 mobility was detected by fluorescence recovery after photobleaching (FRAP). By triggering release of ER calcium with 3,5-dihydroxyphenylglycine (DHPG) or carbachol (Cch), agonists of type I metabotropic glutamate receptors (mGluR) and muscarinic acetylcholine receptors (mAChR), respectively, STIM1 was activated, and calcium entry (likely to represent SOCE) occurred in dendrites. It is therefore possible that neuronal SOCE is activated by physiological stimuli, some of which may alter the postsynaptic calcium signaling properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.