Abstract

Dendritic composite array of silicon nanowires (SiNWs)/WO3 nanowires was prepared for highly sensitive gas sensor application. WO3 nanowires were grown directly on the top section of SiNWs fabricated by metal-assisted chemical etching (MACE), through thermal annealing of pre-deposited W film to obtain dendritic SiNWs/WO3 nanowires array. At room temperature (RT), the composite sensor shows obviously enhanced sensing response to NO2 in comparison to pure SiNWs sensor. The response value upon 5ppm NO2 exposure is more than four folds of that from SiNWs. Meanwhile, good selectivity as well as perfect dynamic characteristic, especially ultrafast response (response time <1s to 0.5–5ppm NO2) is achieved for the composite sensor. The underlying sensing mechanism of the composite sensor is analyzed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.