Abstract

BackgroundDendritic cells (DCs) with both proinflammatory and tolerogenic properties have been implicated in modulation of CD4+ T cell responses in many fungal diseases. However, the role of DC in the context of Talaromyces marneffei (T. marneffei) infection has not been determined. In this study, we aimed to study the effect of the yeast form of T. marneffei yeasts on DCs, as well as the role of DCs in modulating T helper 17 (Th17) and regulatory T (Treg) cell responses to the pathogen.MethodsMouse bone marrow-derived DCs were stimulated with T. marneffei yeasts for 24 h. Frequencies of CD80 and CD86 expression on DCs and the levels of IL-6, IL-10 and TGF-β in the culture supernatant of yeast-stimulated DCs were detected by flow cytometry and ELISA, respectively. In co-culture experiments, CD4+ T lymphocytes of mice were isolated from the spleen using magnetic beads and co-cultured with T. marneffei yeasts, with or without DCs for 24 h. The proportions of Th17 and Treg cells in co-culture were detected by flow cytometry. The mRNA levels of RORγt and Foxp3 were detected by RT-PCR. Levels of IL-10 and TGF-β in the co-culture supernatant were detected by ELISA.ResultsThe expressions of CD80 and CD86 on DCs were increased, as well as IL-6, IL-10 and TGF-β levels in the culture supernatant of T. marneffei-stimulated DCs were higher than those in DCs cultured without T. marneffei. In co-culture experiments, in the presence of DCs, T. marneffei promoted Treg expansion and Foxp3 up-regulation but limited Th17 and downregulated RORγt. Levels of IL-10 and TGF-β were higher in the co-culture containing DCs than without DCs.ConclusionOur findings demonstrated that the interaction between DCs and T. marneffei could promote Treg expansion but not Th17 generation. These findings provide a mechanism by which DCs may promote immune tolerance in T. marneffei infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.