Abstract

Solid tumors are well known for their genomic heterogeneity. Although some aspects of this derive from so-called driver mutations, it is now clear that tumor cells possess a seemingly limitless capacity to evade cell death pathway activation, maintain essential survival programming, and initiate resistance networks that block efficacy of cytotoxic and targeted therapy. Given this amazing survival capability, how then to design approaches for effective eradication of malignant cells? Also present within all solid tumors is a diverse assemblage of genomically stable immune cell types. Whereas some of these possess documented activities that foster tumor progression, others possess inherent activities that when favored lead to rapid tumor cell elimination. This review focuses on aspects of dendritic cell biology in solid tumors, especially breast cancers, which point to dendritic cells as a tractable tool to exploit for immune-based therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.