Abstract

Necroptosis is a form of cell death associated with inflammation; however, the biological consequences of chronic necroptosis are unknown. Necroptosis is mediated by RIPK1, RIPK3, and MLKL kinases but in hematopoietic cells RIPK1 has anti-inflammatory roles and functions to prevent necroptosis. Here we interrogate the consequences of chronic necroptosis on immune homeostasis by deleting Ripk1 in mouse dendritic cells. We demonstrate that deregulated necroptosis results in systemic inflammation, tissue fibrosis, and autoimmunity. We show that inflammation and autoimmunity are prevented upon expression of kinase inactive RIPK1 or deletion of RIPK3 or MLKL. We provide evidence that the inflammation is not driven by microbial ligands, but depends on the release of danger-associated molecular patterns and MyD88-dependent signaling. Importantly, although the inflammation is independent of type I IFN and the nucleic acid sensing TLRs, blocking these pathways rescues the autoimmunity. These mouse genetic studies reveal that chronic necroptosis may underlie human fibrotic and autoimmune disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.