Abstract
Dendritic spines are divided into four subtypes, namely, Mushroom, Stubby, Thin, and Branched. The mushroom-shaped spines are related to learning and memory. Previous studies have shown that the dendritic cell factor 1 (Dcf1, a transmembrane protein) affects the memory process and regulates the development of dendritic spines by inhibiting the expression of lipocalin 2 (Lcn2, a member of the family containing over 20 small secreted proteins). However, the exact subtype of dendritic spines that are specifically affected by Dcf1 remains unknown. Here, we identified that deletion of Dcf1 leads to developmental defects in mushroom-shaped spines. We provide evidence for memory defects caused by Dcf1-knockout in mice. We discovered and report for the first time that Dcf1 affects the development of mushroom-shaped spines by inhibiting the expression of Lcn2. Further, we demonstrated that environmental enrichment can effectively stimulate Dcf1-knockout mice and rescue development defects in mushroom-shaped spines caused by Dcf1 deletion. Our results provide a novel direction for further studies on dendritic spine development and mechanisms associated with learning and memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.