Abstract

The microstructures and corrosion behaviors of AA2198–T851 alloy and weld were analyzed under corrosive conditions. Weld was formed using an innovative fiber laser welding process with AA2319 Al–Cu filler wire. The metallurgic morphology and distribution of the chemical compositions were determined using imaging techniques such as optical micrograph, scanning electron micrograph, high-resolution transmission electron microscopy, energy-dispersive X-ray spectrometry and X-ray diffraction. Corrosion was evaluated using an immersion test and electrochemical impedance spectroscopy in 3.5% NaCl solution at room temperature. Results indicate that the parent alloy suffered from pitting corrosion during the initial 4-h immersion which was caused by the inhomogeneous distribution of its chemical components and the different intermetallics formed during the rolling process. The weld experienced dendritic boundary corrosion under the same conditions due to the addition of the Al–Cu filler and rapid solidification during laser welding, which led to the precipitates Cu enrichment along the grain boundary. When a welding joint was immersed in the solution for 5 days, a big crack was observed across the center of the weld. In comparison, there was good corrosion resistance in the heat-affected zone with a compact protective film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.