Abstract

Series of dendritic building blocks (G series) with various periphery alkyl chain lengths (C3, C10 and C18) were prepared via convergent synthesis route through reaction-selective building block, (4-Isocyanato-4′(3,3-dimethyl-2,4-dioxo-azetidino)diphenylmethane, IDD) and diethylenetriamine (DETA) via alternative addition and ring-opening reaction. These azetidine-2,4-dione containing dendritic building blocks then reacted with several amino acid compounds to generate the corresponding dendritic co-adsorbents (GA series). GA series comprising different generations, various alkyl chain lengths closed to anchor and/or in the periphery are discussed and applied into dye-sensitized solar cells (DSSCs). The cells utilized similar phenothiazine-based dyes (HL5) as sensitizer with fixed concentration (0.3 mM) of co-adsorbents are fabricated to explore the effect on cell performances and interfacial charge properties. Power conversion efficiencies (PCEs) of 7.02–7.76% were achieved, which better than the commercially available CDCA co-adsorbent based cell (6.71% ± 0.14%). In addition, the highest conversion efficiency also reaches 95% of the standard cell based on N719 metal dye. Herein, several observations: (1) under various alkyl chain lengths closed to anchor, the longest one has efficient charge recombination; (2) under various alkyl chain lengths in the periphery, the moderate one has the best interfacial properties with the longest electron lifetime value; (3) under different generations, the largest one can reduce dye aggregation and charge recombination significantly. Based on our pervious initial study on dendritic co-adsorbents, we further investigated several molecular design on dendritic co-adsorbents to realize the structural effect on cell performance that might be useful for DSSC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call