Abstract

The architecture of dendritic arbors is a defining characteristic of neurons and is established through a sequential but overlapping series of events involving process outgrowth and branching, stabilization of the global pattern, and synapse formation. To investigate the roles of cadherins and β1-integrins in maintaining the global architecture of the arbor, we used membrane permeable peptides and transfection with dominant-negative constructs to disrupt adhesion molecule function in intact chick neural retina at a stage when the architecture of the ganglion cell (RGC) arbor is established but synapse formation is just beginning. Inactivation of β1-integrins induces rapid dendrite retraction, with loss of dynamic terminal filopodia followed by resorption of major branches. Disruption of N-cadherin–β-catenin interactions has no effect; however, dendrites do retract following perturbation of the juxtamembrane region of N-cadherin, which disrupts N-cadherin-mediated adhesion and initiates a β1-integrin inactivating signal. Thus, developing RGC dendritic arbors are stabilized by β1-integrin-dependent processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.