Abstract
AbstractLithium (Li) metal anodes are regarded as a promising pathway to meet the rapidly growing requirements on high energy density cells, owing to their highest gravimetric capacity (3840 mAh g−1) and their lowest redox potential. The application of Li metal anodes, however, is still hindered by undesired dendrites formation and endless consumption of liquid electrolyte due to a continuous reaction on interface of electrolyte/Li‐metal without a stable solid–electrolyte–interface (SEI) layer. A stable protection layer is formed on Li metal anode by in situ transferring the coating layer from polymer separator. The Li anode protection strategy is developed with an in situ formed protection layer transferred through the reduction of a coating layer on polymer separator. A PbZr0.52Ti0.48O3(PZT) coating layer on polypropylene (PP) separator is reduced by Li metal anode to produce a Pb metal containing composite layer, which could form Pb–Li alloy and adhere to the surface of Li metal anode after the reaction and improves the Li plating/stripping efficiency owing to the formation of a more homogenized electric field. Both the Li/Li symmetric cells and LiFePO4/Li cells with this PZT precoated PP separators exhibit significantly improved Coulombic efficiency and cycling life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.